Do Special Noncovalent π - π Stacking Interaction Really Exist?

Grimme, S. Angew. Chem. Int. Ed. 2008, 47, 3430

π - π Stacking Effect (PSE)

 The energy difference between stacked aromatic units compared to, for example, saturated (hydrogenated) rings of about the same size.

Before we start

Benzene vs.cyclohexane
 both exist as fluids at room temperature.

Similar intermolecular interaction----Incompatible with π - π stacking effect Polycyclic aromatic hydrocarbons(PAHs) vs. large alkanes

PAHs become increasingly insoluble in common solvents with increasing size----Compatible with $\pi - \pi$ stacking effect

Models

Linear condensed acenes, from benzene to tetracene and their corresponding saturated ring systems.

Figure 1. Energy-minimized structures of the benzene dimer: a) T-shaped and b) π - π stacked. c), d) The cyclohexane dimer in two projections. The tetracene dimer: e) T-shaped and f) π - π stacked. g) The octadecahydrotetracene dimer.

Energy-minimized intermolecular distance R

- Saturated series: 426.2—426.5 pm
- Aromatic dimers (PD): n=1 391.4 [349.4] n=2 383.0 [337.9] n=3 379.4 [333.8] n=4 374.7 [331.4]

decrease

 Aromatic dimers(T-shaped): n=1 491.3 [493.0] n=2 493.5 [493.4] n=3 n=4

The orientation of the monomers also play an important role in $\pi - \pi$ stacking.

Intermolecular interaction energies $\triangle E$

Table 1: Calculated interaction energies $-\Delta E$ [kcal mol⁻¹].^[a]

Method	Number of Rings						
	1	2	3	4			
	T-shaped	T-shaped, aromatic					
(SCS)-MP2	2.49	4.98	7.70	10.53			
B2PLYP-D	2.82	5.46	8.25	11.12			
	stacked, saturated						
(SCS)-MP2	2.48	5.02	7.72	10.48			
B2PLYP-D	3.09	5.92	8.88	11.83			
	stacked, aromatic						
(SCS)-MP2	2.97	7.77	13.15	18.86			
B2PLYP-D	2.62	6.81	11.46	16.33			

Do not overestimate the effect of the π System in small size Molecules(<10 C's).

[a] Counterpoise-corrected (1/2CP) single-point energy calculations using B97-D/TZV(2d,2p) energy-minimized geometries and a QZV3P AO basis set. (SCS)-MP2 refers to MP2 for saturated and SCS-MP2^[22] for the aromatic systems, which is currently the best wavefunction approach for large van der Waals complexes.^[33]

Intermolecular interaction energies $\triangle E$

The magnitude of the slope Indicates the existence of PSE in stacked aromatic complex.

Figure 2. Interaction energies ΔE [B2PLYP-D/QZV3P(1/2CP)] as a function of the number of rings *n*.

- There is special interaction in the π π Stacked arrangement.
- Is the π system directly responsible for it?

Electrostatic Potential

Figure 3. Electrostatic potentials (B97-D/TZV(2d,2p), isosurface values in kcal mol^{-1}) for a) naphthalene and b) decalin.

ES interaction disfavored

ES interaction favored

Energy decomposition analysis

• The first-order interaction

$$E_1 = E_{ES} + E_{EXR}$$

 E_{EXR} = Pauli exchange repulsion

n	$E_{\rm exr}$	E _{ES}	E ₁	E_{ind}	$E_{ m PT2}^{ m disp}$	E_{DFT-D}^{disp}
T-sh	aped, aron	natic				
1	9.4	-7.8	1.6	-1.0	-1.8	-2.0
2	17.5	-14.1	3.4	-1.8	-3.7	-3.9
3	25.7	-20.4	5.3	-2.6	-5.9	-5.9
4	34.2	-26.9	7.3	-3.4	-8.1	-8.0
stac	ked, satura	ted				
1	19.9	-14.7	5.2	-1.5	-2.8	-4.1
2	37.5	-27.5	10.0	-3.0	-5.6	-7.6
3	55.1	-40.3	14.8	-4.6	-8.4	-11.3
4	72.2	-52.8	19.4	-6.1	-11.2	-14.9
stac	ked, aroma	atic				
1	12.0	-8.6	3.5	-0.8	-2.9	-2.6
2	27.6	-20.3	7.4	-2.0	-6.9	-5.8
3	44.2	-33.0	11.2	-3.1	-11.2	-9.2
4	62.6	-46.6	16.0	-4.7	-15.9	-12.9

Table 2: Contributions^[a] to the interaction energies (B2PLYP-D/TZV-(2d,p), [kcal mol⁻¹]) from an EDA.^[b]

E1 arom < E1 sat : Less repulsion for aromatic complex

The increasing stability of the larger π -stacked dimers can be attributed almost exclusively to the dispersion component

•
$$E_{disp} = E_{disp}^{PT2} + E_{disp}^{DFT-D}$$

$\dot{E}_{ m disp}^{ m PT2}$: orbital-dependant

 $E_{\text{disp}}^{\text{DFT-D}}$: a classical part

Electron Correlation Contribution to the Interaction Energy

Figure 5. Correlation contributions to the interaction energies (counterpoise-uncorrected SCS-LMP2/TZV(2d,p)) for stacked arenes (——: fully energy-minimized complexes; -•-•: fixed interplane distance of 349 pm) and T-shaped complexes (----).

- Both σ-π and π-π contributions distinguish the stacked aromatic orientation from the T-shaped orientation.
- Nonlinear curves rule out pure geometrical reasons.

Do Special Noncovalent π - π Stacking Interaction Really Exist?

- Yes
- Large unsaturated systems(>10 carbons)
- Spatially close----Stacked